}
}
-/* Implementation of Dijkstra's algorithm.
- Running time: O(N^2)
-*/
-
-static void sssp_dijkstra(void) {
- splay_node_t *node, *to;
- edge_t *e;
- node_t *n, *m;
- list_t *todo_list;
- list_node_t *lnode, *nnode;
- bool indirect;
-
- todo_list = list_alloc(NULL);
-
- logger(DEBUG_SCARY_THINGS, LOG_DEBUG, "Running Dijkstra's algorithm:");
-
- /* Clear visited status on nodes */
-
- for(node = node_tree->head; node; node = node->next) {
- n = node->data;
- n->status.visited = false;
- n->status.indirect = true;
- n->distance = -1;
- }
-
- /* Begin with myself */
-
- myself->status.indirect = false;
- myself->nexthop = myself;
- myself->via = myself;
- myself->distance = 0;
- list_insert_head(todo_list, myself);
-
- /* Loop while todo_list is filled */
-
- while(todo_list->head) {
- n = NULL;
- nnode = NULL;
-
- /* Select node from todo_list with smallest distance */
-
- for(lnode = todo_list->head; lnode; lnode = lnode->next) {
- m = lnode->data;
- if(!n || m->status.indirect < n->status.indirect || m->distance < n->distance) {
- n = m;
- nnode = lnode;
- }
- }
-
- /* Mark this node as visited and remove it from the todo_list */
-
- n->status.visited = true;
- list_unlink_node(todo_list, nnode);
-
- /* Update distance of neighbours and add them to the todo_list */
-
- for(to = n->edge_tree->head; to; to = to->next) { /* "to" is the edge connected to "from" */
- e = to->data;
-
- if(e->to->status.visited || !e->reverse)
- continue;
-
- /* Situation:
-
- /
- /
- ----->(n)---e-->(e->to)
- \
- \
-
- Where e is an edge, (n) and (e->to) are nodes.
- n->address is set to the e->address of the edge left of n to n.
- We are currently examining the edge e right of n from n:
-
- - If edge e provides for better reachability of e->to, update e->to.
- */
-
- if(e->to->distance < 0)
- list_insert_tail(todo_list, e->to);
-
- indirect = n->status.indirect || e->options & OPTION_INDIRECT || ((n != myself) && sockaddrcmp(&n->address, &e->reverse->address));
-
- if(e->to->distance >= 0 && (!e->to->status.indirect || indirect) && e->to->distance <= n->distance + e->weight)
- continue;
-
- e->to->distance = n->distance + e->weight;
- e->to->status.indirect = indirect;
- e->to->nexthop = (n->nexthop == myself) ? e->to : n->nexthop;
- e->to->via = indirect ? n->via : e->to;
- e->to->options = e->options;
-
- if(e->to->address.sa.sa_family == AF_UNSPEC && e->address.sa.sa_family != AF_UNKNOWN)
- update_node_udp(e->to, &e->address);
-
- logger(DEBUG_SCARY_THINGS, LOG_DEBUG, " Updating edge %s - %s weight %d distance %d", e->from->name,
- e->to->name, e->weight, e->to->distance);
- }
- }
-
- list_free(todo_list);
-}
-
/* Implementation of a simple breadth-first search algorithm.
Running time: O(E)
*/
for(node = myself->subnet_tree->head; node; node = node->next) {
subnet_t *subnet = node->data;
- logger(DEBUG_ALWAYS, LOG_DEBUG, "subnet %p expires %d\n", subnet, subnet->expires);
+ logger(DEBUG_ALWAYS, LOG_DEBUG, "subnet %p expires %d\n", subnet, (int)subnet->expires);
if(!subnet->expires)
subnet->expires = 1;
}
continue;
if((s2 = lookup_subnet(myself, subnet))) {
- logger(DEBUG_ALWAYS, LOG_DEBUG, "read subnet that already exists: %p expires %d\n", s2, s2->expires);
+ logger(DEBUG_ALWAYS, LOG_DEBUG, "read subnet that already exists: %p expires %d\n", s2, (int)s2->expires);
if(s2->expires == 1)
s2->expires = 0;